Hemolytic uremic syndrome due to shiga-like toxin producing Escherichia coli 048:H21 in South Australia.

نویسندگان

  • P. N. Goldwater
  • K. A. Bettelheim
چکیده

Enterohemorrhagic Escherichia coli (EHEC) other than serotypes O157:H7 are increasingly recognized in association with hemolytic uremic syndrome (HUS) (1) and have been reported in Australia (2). While detecting strains of O157:H7 has become easier over the years, identifying the expanding number of other serotypes of EHEC also associated with HUS, with other conditions, and with healthy domestic animals is still very difficult. Cases of HUS have been reported in Australia over a number of years. The most common serotype found was O111:H-, and Australia’s recently reported first HUS outbreak (3) was caused by EHEC O111:H-. We wish to report a case of severe HUS due to serotype O48:H21, which, as far as we know, has not been previously reported as a cause of HUS. This case occurred in 1993, before surveillance of HUS had been initiated; after this case, between July and December 1994, 10 cases of HUS (from which four isolates were obtained; two were EHEC O111) were reported to the Australian Paediatric Surveillance Unit (E. Elliott, pers. comm.). The patient in the 1993 case was an 8-year-old girl, living in a rural setting in the outskirts of Adelaide, South Australia. Her home was adjacent to a farm on which cows, sheep, and ducks were kept. A kelpie/healer cross puppy was in the house in November 1993. Also kept were a pet galah (Australian cockatoo) and pet fish. She was well until 23 December 1993, when she had diarrhea described as very smelly and watery “like the juice of tinned crab.” The diarrhea became bloody on 2 January 1994 and was associated with severe abdominal pains which made the patient draw up her legs. She was having bowel movements six times a day, had become very weak, and was unable to stand. She was admitted to Adelaide Children’s Hospital on 3 January 1994, and her condition progressed to anuric renal failure over the next few days. Serum biochemistry on 7 January showed a urea level of 23.3 mmol/L and creatinine level of 539 μmol/L. Her hemoglobin level fell from 157 g/L on 3 January to 86 g/L on 10 January. Her hematocrit fell from 48% to 24%, and her platelet count fell from 463 x 109/L to 47 x 109/L on these dates, respectively. The blood film showed microangiopathic hemolytic anemia with fragmented red cells. She required hemodialysis for 3 weeks and was discharged from the hospital on 31 January 1994. Apart from the patient’s 5-year-old brother, who had loose bowel movements for 1 day on 28 December 1993, no other family members were affected. An adequate dietary history was not obtained; however, no food had been eaten from commercial food outlets. Stool samples were collected on 4 and 5 January 1994. The samples were probed for Shiga-like toxin (SLT)-I and SLT-II genes by polymerase chain reaction (PCR), and the results were positive. Approximately 80% of lactose-fermenting colonies on MacConkey agar were also SLT positive. No sorbitol-negative colonies were observed on sorbitol-MacConkey agar. In addition to being cultured for E. coli, the stools were also routinely cultured for Shigella, Salmonella, Yersinia, Vibrio, and Clostridium. In addition, stained concentrates were examined for Giardia lamblia and Entamoeba histolytica with negative results. Four typical E. coli strains were subjected to further tests. They were typical E. coli, positive in the indole and ONPG tests, negative in the VogesProskauer, citrate, TDA, malonate, urease, gelatine, and H2S tests. The strains fermented glucose, lactose, mannitol, xylose, rhamnose, arabinose, sorbitol, sucrose, and melibiose. They did not ferment inositol, adonitol, salicin, raffinose, or amylose. They decarboxylated arginine, lysine, and ornithine. All the strains produced enterohaemolysin (4). The strains were O and H serotyped (5, 6) and found to be serotype O48:H21. Supernatant preparations were tested on Vero cells (7) and found to give typical verocytotoxic reactions in titers of 103 to 104. The supernatants were also tested by enzyme-linked immunosorbent assay (ELISA) by using monoclonal antibodies 13C4 and 11E10 directed against SLT-I and SLT-II, respectively, and strong reactions with both antibodies were noted, confirming the presence of both SLTs. Dispatches

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity and virulence potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources.

Shiga toxin-producing Escherichia coli strains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogen...

متن کامل

Recurrent Hemolytic and Uremic Syndrome Induced by Escherichia Coli

A widespread belief is that typical hemolytic and uremic syndrome (HUS) does not recur. We report the case of a patient infected twice with raw milk taken from his own cow and containing a Shiga toxin-producing Escherichia coli O174:H21 that induced recurrent HUS causing severe renal and cerebral disorders. A genomic comparison of the human and bovine Shiga toxin-producing Escherichia coli O174...

متن کامل

Mild Illness during Outbreak of Shiga Toxin−Producing Escherichia coli O157 Infections Associated with Agricultural Show, Australia

During a large outbreak of Shiga toxin-producing Escherichia coli illness associated with an agricultural show in Australia, we used whole-genome sequencing to detect an IS1203v insertion in the Shiga toxin 2c subunit A gene of Shiga toxin-producing E. coli. Our study showed that clinical illness was mild, and hemolytic uremic syndrome was not detected.

متن کامل

Genome Sequence for Shiga Toxin-Producing Escherichia coli O26:H11, Associated with a Cluster of Hemolytic-Uremic Syndrome Cases in South Africa, 2017

Shiga toxin-producing Escherichia coli (STEC) strains are primarily foodborne pathogens that may cause diarrheal outbreaks and are associated with severe complications, specifically hemolytic-uremic syndrome (HUS). We report here genome sequence data for STEC O26:H11, which is associated with a cluster of cases of HUS, a rarely described syndrome in South Africa.

متن کامل

Draft Whole-Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O91:H21 Isolates, Two from Hemolytic Uremic Syndrome Patients and One of Porcine Origin

This study presents three genomes of O91:H21 isolates, two from hemolytic uremic syndrome patients and one of porcine origin. Genome analyses reveal that one of the human isolates contains both Shiga toxin-encoding genes (stx1 and stx2), and all three isolates contain putative adhesin (iha and eaeH) and antibiotic resistance (ampC) genes.

متن کامل

Inhibition of water absorption and selective damage to human colonic mucosa are induced by subtilase cytotoxin produced by Escherichia coli O113:H21.

Shiga toxin-producing Escherichia coli O157:H7 (STEC) is by far the most prevalent serotype associated with hemolytic uremic syndrome (HUS) although many non-O157 STEC strains have been also isolated from patients with HUS. The main virulence factor of STEC is the Shiga toxin type 2 (Stx2) present in O157 and non-O157 strains. Recently, another toxin, named subtilase cytotoxin (SubAB), has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Emerging Infectious Diseases

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1995